Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị dương trên \(\mathbb{R}.\) Gọi \({D_1}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\) các đường \(x = 0,\,\,x = 1\) và trục \(Ox.\) Gọi \({D_2}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{1}{3}f\left( x \right),\) các đường \(x = 0,\,\,\,x = 1\) và trục \(Ox.\) Quay các hình phẳng \({D_1},\,\,{D_2}\) quanh trục \(Ox\) ta được các khối tròn xoay có thể tích lần lượt là \({V_1},\,\,{V_2}.\)
Khẳng định nào sau đâu là đúng?
Gợi ý câu trả lời: