Giải thích các bước giải:
B1:
$\begin{array}{l}
a)(x - 2)(x + 2) + x = 2x + {x^2} + 4\\
\Leftrightarrow {x^2} - 4 + x = {x^2} + 2x + 4\\
\Leftrightarrow x = - 8\\
b){x^2}(x - 3) - {x^3} = {x^2} + 4\\
\Leftrightarrow {x^3} - 3{x^2} - {x^3} = {x^2} + 4\\
\Leftrightarrow 4{x^2} + 4 = 0\left( {vn,4{x^2} + 4 \ge 4 > 0,\forall x} \right)\\
c)\left( {x - 2} \right)\left( {x + 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 2 = 0\\
x + 3 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\\
x = - 3
\end{array} \right.\\
d)\left( {{x^n} - 2{x^4}} \right){x^2} - {x^{n - 1}}\left( {2{x^3} - 3x - 1} \right) = 0\\
\Leftrightarrow {x^{n + 2}} - 2{x^6} - 2{x^{n + 2}} + 3{x^n} + {x^{n - 1}} = 0\\
\Leftrightarrow - {x^{n + 2}} + 3{x^n} + {x^{n - 1}} - 2{x^6} = 0\\
\Leftrightarrow {x^6}\left( { - {x^{n - 4}} + 3{x^{n - 6}} + {x^{n - 7}} - 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{x^6} = 0\\
- {x^{n - 4}} + 3{x^{n - 6}} + {x^{n - 7}} - 2 = 0
\end{array} \right.\\
\Leftrightarrow x = 0
\end{array}$
Câu d xem lại đề bài.
B2:
a) Ta có:
$\begin{array}{l}
A = 2{x^4} - 61{x^3} - 95{x^2} - 31x + 64\\
= 2\left( {{x^4} - 32{x^3}} \right) + 3\left( {{x^3} - 32{x^2}} \right) - \left( {{x^2} - 32x} \right) - 63\left( {x - 32} \right) - 1952\\
= \left( {x - 32} \right)\left( {2{x^3} + 3{x^2} - x - 63} \right) - 1952
\end{array}$
Khi $x = 32 \Rightarrow A = - 1952$
b) Ta có:
$\begin{array}{l}
B = {x^5} - 2013{x^4} + 2015{x^3} - 4032{x^2}\\
= \left( {{x^5} - 2012{x^4}} \right) - \left( {{x^4} - 2012{x^3}} \right) + 3\left( {{x^3} - 2012{x^2}} \right) + 2004{x^2}\\
= \left( {x - 2012} \right)\left( {{x^4} - {x^3} + 3{x^2}} \right) + 2004{x^2}
\end{array}$
Khi $x = 2012 \Rightarrow B = {2004.2012^2}$