`Q=\sqrt{x-6\sqrt{x}+13}` `(đk: x ≥ 0)`
`=\sqrt{x-6\sqrt{x}+9+4}`
`=\sqrt{(\sqrt{x}-3)^2+4}`
Có: `(\sqrt{x}-3)^2 ≥ 0 ∀ x ≥ 0`
`⇒(\sqrt{x}-3)^2 + 4 ≥4 ∀ x ≥ 0`
`⇒\sqrt{(\sqrt{x}-3)^2+4} ≥ 2 ∀ x ≥ 0`
Dấu "=" xảy ra
`⇔(\sqrt{x}-3)^2 = 0`
`⇒\sqrt{x}-3=0`
`⇔x=9 (tm)`
Vậy Min `Q = 2` khi `x=9`