`(x - 1/2) + (x - 1/6) + (x - 1/12) + ... + (x - 1/110) = 12/11`
`=> (x + x + ... + x) - (1/2 + 1/6 + 1/12 + ... + 1/110) = 12/11`
Ta có:
`1/2 + 1/6 + 1/12 + ... + 1/110`
`= 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(10.11)`
`= 1 - 1/2 + 1/2 - 1/3 + .. + 1/10 - 1/11`
`= 1 - 1/11`
`= 10/11`
Do đó:
`(x + x + ... + x) - (1/2 + 1/6 + 1/12 + ... + 1/110) = 12/11`
`=> 10x - 10/11 = 12/11`
`=> 10x = 12/11 + 10/11`
`=> 10x = 22/11`
`=> x = 1/5`
Vậy `x = 1/5`