`(x+1)/2=(y+2)/3=(z+3)/4`
`=(x+1+y+2+z+3)/(2+3+4)`
`=(21+6)/9`
`=3`
`=>`
`(x+1)/2=3 => x+1=3.2=6 => x=6-1=5 `
`(y+2)/3=3 => y+2=3.3=9 => y=9-2=7`
`(z+3)/3=4 => z+3=3.4=12 => z=12-3=9`
Vậy `x=5; y=7; z=9`
-----
`(x-1)/3=(y-2)/4=(z-3)/5`
`=(x-1+y-2+z-3)/(3+4+5)`
`=(42-6)/12`
`=3`
`=>`
`(x-1)/3=3 => x-1=3.3=9 => x=9+1=10`
`(y-2)/4=3 => y-2=3.4=12 => y=12+2=14`
`(z-3)/5=3 => z-3=3.5=15 => z=15+3=18`
Vậy `x=10; y=14; z=18`