Giải thích các bước giải:
Ta có:
`1/3+1/6+1/10+...+1/(x.(x+1):2)=2013/2015`
`=>1/2(1/3+1/6+1/10+...+1/(x.(x+1):2))=1/2. 2013/2015`
`=>1/6+1/12+1/20+...+1/(x.(x+1))=2013/4030`
`=>1/2.3+1/3.4+1/4.5+...+1/(x.(x+1))=2013/4030`
`=>1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)=2013/4030`
`=>1/2-1/(x+1)=2013/4030`
`=>1/(x+1)=1/2-2013/4030=2/4300=1/2015`
`=>x+1=2015`
`=>x=2014.`