Đáp án đúng: C
Giải chi tiết:\(\begin{array}{l}{1^3} + {2^3} + {3^3} + ..... + {10^3} = {\left( {x + 1} \right)^2}\\\,\,\,\,\,\,{\left( {1 + 2 + 3 + .... + 10} \right)^2} = {\left( {x + 1} \right)^2}\\\,\,\,\,\,\,\,{\left( {\frac{{10.\left( {10 + 1} \right)}}{2}} \right)^2} = {\left( {x + 1} \right)^2}\\\,\,\,\,\,\,\,\,\,{55^2}\,\,\,\,\,\,\, = {\left( {x + 1} \right)^2}\\\,\,\,\,\,\,\,\,x + 1 = 55\\\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\, = 55 - 1\\\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\, = 54.\end{array}\)
Vậy \(x = 54.\)
Chọn C.