Đáp án đúng: B
Phương pháp giải:
Biến đổi \( - 27 = {\left( { - 3} \right)^3}\) , sau đó áp dụng tính chất \({A^3} = {B^3} \Rightarrow A = B\) từ đó tìm \(x\).Giải chi tiết:\(\begin{array}{l}\,\,{\left( {x - 1} \right)^3} = - 27\\\,\,\,\,\,\,\,{\left( {x - 1} \right)^3} = {\left( { - 3} \right)^3}\\\,\,\,\,\,\,\,x - 1 = - 3\\\,\,\,\,\,\,\,x = - 3 + 1\\\,\,\,\,\,\,\,x = - 2\end{array}\)
Vậy \(x = - 2\) .
Chọn B