Đáp án:
↓↓↓
Giải thích các bước giải:
`a,(4x-10)(20-5x)=0`
⇒ \(\left[ \begin{array}{l}4x-10=0\\20-5x=0\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x=5/2\\x=4\end{array} \right.\)
`b,(x+1)/(x-1)-(x-1)/(x+1)=4/(x^2-1)`
⇒`x`$\neq$ `±1`
⇒`(x+1)/(x-1)-(x-1)/(x+1)-4/(x^2-1)=0`
⇒`((x+1)^2-(x-1)^2-4)/((x-1)(x+1))=0`
⇒`(4(x-1))/((x-1)(x+1))=0`
⇒`4/(x+1)=0`
⇒`4=0`
⇒`x∈∅`
`c,(2x-8)/6-(3x+1)/4=(9x-2)/8+(3x-1)/12`
⇒`4(2x-8)-6(3x+1)=3(9x-2)+2(3x-1)`
⇒`8x-32-18x-6=27x-6+6x-2`
⇒`-43x=30`
⇒`x=-30/43`
`d,(x+2)(3-4x)=x^2+4x+4`
⇒`3x-4x^2+6-8x=x^2+4x+4`
⇒`-5x-4x^2+6=x^2+4x+4`
⇒`-5x-4x^2+6-x^2-4x-4=0`
⇒`(x+2)(5x-1)=0`
⇒\(\left[ \begin{array}{l}x=-2\\x=1/5\end{array} \right.\)
`e,(2x+1)(x+1)^2(2x+3)=0`
⇒\(\left[ \begin{array}{l}2x+1=0\\(x+1)^2=0\\2x+3=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=-1/2\\x=-1\\x=-3/2\end{array} \right.\)