1. |48 - 3x| = 0.
\(\Leftrightarrow\) 48 - 3x = 0.
\(\Leftrightarrow\) 3x = 48.
\(\Leftrightarrow\) x = \(\dfrac{48}{3}=16.\)
Vậy x = 16.
2. |-x - 7| = 24.
\(\Leftrightarrow\left[{}\begin{matrix}-x-7=24.\\-x-7=-24.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=31.\\-x=-17.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-31.\\x=17.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-31.\\x=17.\end{matrix}\right.\)
3. |4 - x| = 21.
\(\Leftrightarrow\left[{}\begin{matrix}4-x=21.\\4-x=-21.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-17.\\x=25.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17.\\x=25.\end{matrix}\right.\)
4. |x + 8| + 12 = 0.
|x + 8| = 0 - 12.
|x + 8| = -12.
\(\Leftrightarrow\left[{}\begin{matrix}x+8=-12.\\x+8=-\left(-12\right).\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=-12.\\x+8=12.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-20.\\x=4.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-20.\\x=4.\end{matrix}\right.\)
5. 6 - |x| = 2.
|x| = 6 - 2.
|x| = 4.
\(\Leftrightarrow\left[{}\begin{matrix}x=4.\\x=-4.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=4.\\x=-4.\end{matrix}\right.\)