a, Ta có ` sqrt3.sin2x+sin(π/2 +2x) =1`
`<=> cos(2 x) + sqrt(3) sin(2 x) = 2 [1/2 cos(2 x) + 1/2 sqrt(3) sin(2 x)]`
`= 2 [sin(π/6) cos(2 x) + cos(π/6) sin(2 x)]`
`= 2 sin(2 x + π/6): 2 sin(2 x + π/6) = 1`
`<=> sin(2 x + π/6) = 1/2`
`<=>` \(\left[ \begin{array}{l}2 x + \frac{\pi}{6} = 2 π n + \frac{5\pi}{6} (n \in \mathbb{Z})\\2 x + \frac{\pi}{6} = 2 π n + \frac{\pi}{6}(n \in \mathbb{Z})\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2 x = 2 π n + \frac{2\pi}{3}(n \in \mathbb{Z})\\2 x = 2 π n (n \in \mathbb{Z})\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = π n + \frac{\pi}{3}(n \in \mathbb{Z})\\ x = π n (n \in \mathbb{Z}) \end{array} \right.\)
Vậy phương trình có tập nghiệm
`S={π n +\frac{\pi}{3} ; π n | n \in \mathbb{Z}}`
b) Ta có: `cos2x+3cosx+2=0`
`<=> 1 + 3 cos(x) + 2 cos^2(x) = 0`
`<=> [cos(x) + 1] [2 cos(x) + 1] = 0`
`<=>` \(\left[ \begin{array}{l}cos(x) + 1 = 0\\ 2 cos(x) + 1 = 0 \end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}cos(x) = -1\\ 2 cos(x) = -1 \end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = 2 π n + π (n \in \mathbb{Z})\\ cos(x) = \frac{-1}{2} \end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = 2 π n + π (n \in \mathbb{Z})\\ x = 2 π n + \frac{2\pi}{3}(n \in \mathbb{Z})\\x = 2 π n + \frac{4\pi}{3}(n \in \mathbb{Z})\end{array} \right.\)
Vậy phương trình có tập nghiệm:
`S={2 π n + π ; 2 π n + \frac{2\pi}{3} ; x = 2 π n + \frac{4\pi}{3} | n \in \mathbb{Z}}`
c, Ta có: `sin3x+cos3x-sinx+cosx=\sqrt2 cos2x`
`<=> cos(x) - sqrt(2) cos(2 x) + cos(3 x) - sin(x) + sin(3 x) = 0`
`<=> 2 sin(-x + π/4) sin(x + π/4) [2 sqrt(2) sin(x + π/4) - sqrt(2)] = 0`
`<=> sin(-x + π/4) sin(x + π/4) [2 sqrt(2) sin(x + π/4) - sqrt(2)] = 0`
`<=>` \(\left[ \begin{array}{l}sin(-x + \frac{\pi}{4}) = 0\\ sin(x + \frac{\pi}{4}) = 0\\2 \sqrt2 sin(x + \frac{\pi}{4}) -\sqrt2 = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}-x + \frac{\pi}{4} = π n(n\in \mathbb{Z})\\ x + \frac{\pi}{4} = π n (n\in \mathbb{Z})\\\sqrt2 [2 sin(x + \frac{\pi}{4}) - 1] = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \frac{\pi}{4} - π n(n\in \mathbb{Z})\\ x = π n-\frac{\pi}{4} (n\in \mathbb{Z})\\2 sin(x + \frac{\pi}{4}) - 1 = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \frac{\pi}{4} - π n(n\in \mathbb{Z})\\ x = π n-\frac{\pi}{4} (n\in \mathbb{Z})\\ sin(x + \frac{\pi}{4}) = \frac{1}{2}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \frac{\pi}{4} - π n(n\in \mathbb{Z})\\ x = π n-\frac{\pi}{4} (n\in \mathbb{Z})\\ x + \frac{\pi}{4}= 2 π n + \frac{5\pi}{6}(n\in \mathbb{Z})\\x + \frac{\pi}{4}= 2 π n + \frac{\pi}{6}(n\in \mathbb{Z})\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \frac{\pi}{4} - π n(n\in \mathbb{Z})\\ x = π n-\frac{\pi}{4} (n\in \mathbb{Z})\\ x = 2 π n + \frac{7\pi}{12}(n\in \mathbb{Z})\\x = 2 π n - \frac{\pi}{12}(n\in \mathbb{Z})\end{array} \right.\)
Vậy phương trình có tập nghiệm:
`S={\frac{\pi}{4} - π n ; π n-\frac{\pi}{4} ; x = 2 π n + \frac{7\pi}{12} ; 2 π n - \frac{\pi}{12} | n \in \mathbb{Z}}`
d) Đề bài là `(9-13cosx+4)/(1+tan^2x)=0` hay là như thế nào hả bạn? Sau mình bổ sung nhé.