1: Cho đường tròn tâm (O) đường kính AB = 2R và một điểm M di động trên một nửa đường tròn . Người ta vẽ một đường tròn tâm (E) tiếp xúc với đường tròn (O) tại M và tiếp xúc với đường kính AB tại N . Đường tròn này cắt MA , MB lần lượt tại các điểm thứ hai C , D
a) Chứng minh : CD // AB .
b) Chứng minh MN là tia phân giác của góc AMB và đường thẳng MN luôn đi qua một điểm K cố định.
c) Chứng minh : KM.KN không đổi