$\\$
Bài `1.`
Đặt `a/b=c/d=k(k\ne 0)`
`->a=bk,c=dk`
`(a+b)/(a-b)=(bk+b)/(bk-b)=(b(k+1))/(b(k-1))=(k+1)/(k-1)`
`(c+d)/(c-d)=(dk+d)/(dk-d)=(d(k+1))/(d(k-1))=(k+1)/(k-1)`
`->(a+b)/(a-b)=(c+d)/(c-d)(=(k+1)/(k+1))`
$\\$
Bài `2.`
Đặt `a/b=c/d=k(k \ne 0)`
`->a=bk,c=dk`
`(ab)/(cd)=(bk.b)/(dk.d)=b^2/d^2`
`(a^2-b^2)/(c^2-d^2)=(b^2k^2-b^2)/(d^2k^2-d^2)=b^2/d^2`
`->(ab)/(cd)=(a^2-b^2)/(c^2-d^2)=(b^2/d^2)`