Đáp án:
Hai đường thẳng cắt nhau
Giải thích các bước giải:
$\Delta_1$ có $VTCP\, \overrightarrow{u_1} = (1;-1)$ và đi qua $M(-2;0)$
$\Rightarrow VTPT\, \overrightarrow{n_1} = (1;1)$
$\Rightarrow \Delta_1: x+y+2 =0$
$\Delta_2: 2x -y - 1 =0$
Ta có:
$\dfrac{1}{2} \ne \dfrac{1}{-1}$
$\Rightarrow \Delta_1$ cắt $\Delta_2$
Cách khác:
Phương trình hoành độ giao điểm giữa hai đường thẳng:
$\begin{cases}x = -2 + t\\y = -t\\2x - y - 1 = 0\end{cases}$
$\Leftrightarrow 2(-2 +t) + t - 1 =0$
$\Leftrightarrow t =\dfrac53$
$\Rightarrow \begin{cases}x = -\dfrac13\\y = \dfrac13\end{cases}$
$\Rightarrow$ Hai đường thẳng cắt nhau tại $\left(-\dfrac13;\dfrac13\right)$