Đáp án:
1. `sqrt(x+1)=x-1` (Đk: `x>= 1`)
`<=> (sqrt(x+1))^2=(x-1)^2`
`<=> x+1=x^2-2x+1`
`<=> x+1-x^2+2x-1=0`
`<=> -x^2+3x=0`
`<=> -x(x-3)=0`
TH1:
`x=0` (KTMĐK)
TH2:
`x-3=0`
`<=> x=3` (t/m)
Vậy `S={3}`
2. `x-sqrt(2x+3)=0` (Đk: `x>= -3/2`)
`<=> x=sqrt(2x+3)`
`<=> x^2=2x+3`
`<=> x^2-2x-3=0`
`<=> x^2+x-3x-3=0`
`<=> x(x+1)-3(x+1)=0`
`<=> (x+1)(x-3)=0`
TH1:
`x+1=0`
`<=> x=-1` (KTMĐK)
TH2:
`x-3=0`
`<=> x=3` (t/m)
Vậy `S={3}`
3. `sqrt(x+4)-sqrt(1-x)=sqrt(1-2x)` (Đk: `-4<=x<= 1/2`)
`<=> sqrt(x+4)=sqrt(1-2x)+sqrt(1-x)`
`<=> (sqrt(x+4))^2=(sqrt(1-2x)+sqrt(1-x))^2`
`<=> x+4=(sqrt(1-2x))^2+2sqrt(1-2x)*sqrt(1-x)+(sqrt(1-x))^2`
`<=> x+4=1-2x+2sqrt((1-2x)*(1-x))+1-x`
`<=> x+4=(1-2x+1-x)+2sqrt(1-3x+2x^2)`
`<=> x+4=2-3x+2sqrt(1-3x+2x^2)`
`<=> x+4-2+3x=2sqrt(1-3x+2x^2)`
`<=> 4x+2=2sqrt(1-3x+2x^2)`
`<=> (4x+2)^2=(2sqrt(1-3x+2x^2))^2`
`<=> 16x^2+16x+4=4(1-3x+2x^2)`
`<=> 16x^2+16x+4=4-12x+8x^2`
`<=> 16x^2+16x+4-4+12x-8x^2=0`
`<=> 8x^2+28x=0`
`<=> 4x(2x+7)=0`
TH1:
`4x=0`
`<=> x=0` (t/m)
TH2:
`2x+7=0`
`<=> 2x=-7`
`<=> x=-7/2` (KTMĐK)
Vậy `S={0}`
4. `sqrt(x-2)-3sqrt(x^2-4)=0` (Đk: `x>=2`)
`<=> sqrt(x-2)=3sqrt(x^2-4)`
`<=> (sqrt(x-2))^2=(3sqrt(x^2-4))^2`
`<=> x-2=9(x^2-4)`
`<=> (x-2)-9(x^2-2^2)=0`
`<=> (x-2)-9(x+2)(x-2)=0`
`<=> (x-2)[1-9(x+2)]=0`
`<=> (x-2)(1-9x-18)=0`
`<=> (x-2)(-17-9x)=0`
TH1:
`x-2=0`
`<=> x=2` (t/m)
TH2:
`-17-9x=0`
`<=> 9x=-17`
`<=> x=-17/9` (KTMĐK)
Vậy `S={2}`