Đáp án:
`P=1`
`A=8`
Giải thích các bước giải:
`P=1/(3-\sqrt{5})-1/(\sqrt{5}+1)`
`P=(3+\sqrt{5})/((\sqrt{3}-5)(\sqrt{3}+5))-(\sqrt{5}-1)/((\sqrt{5}+1)(\sqrt{5}-1))`
`P=(3+\sqrt{5})/(9-5)-(\sqrt{5}-1)/(5-1)`
`P=(3+\sqrt{5})/4-(\sqrt{5}-1)/4`
`P=((3+\sqrt{5})-(\sqrt{5}-1))/4`
`P=(3+\sqrt{5}-\sqrt{5}+1)/4`
`P=4/4`
`P=1`
Vậy `P=1`
`A=2/(\sqrt{5}-2)-2/(\sqrt{5}+2)`
`A=(2(\sqrt{5}+2))/((\sqrt{5}-2)(\sqrt{5}+2))-(2(\sqrt{5}-2))/((\sqrt{5}+2)(\sqrt{5}-2))`
`A=(2\sqrt{5}+4)/(5-4)-(2\sqrt{5}-4)/(5-4)`
`A=(2\sqrt{5}+4)/1-(2\sqrt{5}-4)/1`
`A=(2\sqrt{5}+4)-(2\sqrt{5}-4)`
`A=2\sqrt{5}+4-2\sqrt{5}+4`
`A=8`
Vậy `A=8`