1) Tìm \(x\) , biết:
a) \({{\left( x+2 \right)}^{2}}-\left( x-2 \right)\left( x+2 \right)=0\)
b) \(\left( {{x}^{2}}-2x+1 \right):\left( x-1 \right)+5x=8\)
2) Phân tích đa thức sau thành nhân tử:
a) \(2{{x}^{2}}-14x\)
b) \({{x}^{2}}-{{y}^{2}}+5x+5y\)
A.1) a) \(x=-2\) b) \( x=\frac{3}{2}\)
2) \(a) \text{2}x\left( x-7 \right)\) \(b) \left( x+y \right)\left( x-y+5 \right). \)
B.1) a) \(x=-4\) b) \( x=\frac{3}{2}\)
2) \(a) \text{2}x\left( x-7 \right)\) \(b) \left( x+y \right)\left( x-y+5 \right). \)
C.1) a) \(x=-2\) b) \( x=\frac{3}{2}\)
2) \(a) \text{2}x\left( x+7 \right)\) \(b) \left( x+y \right)\left( x+y+5 \right). \)
D.1) a) \(x=-2\) b) \( x=\frac{1}{2}\)
2) \(a) \text{3}x\left( x-7 \right)\) \(b) \left( x+y \right)\left( x-y-5 \right). \)