$\dfrac{x-1}{2020}+\dfrac{x-2}{2019}-\dfrac{x-3}{2018}-\dfrac{x-4}{2017}=0$
$\Leftrightarrow \dfrac{x-2021+2020}{2020}\,\,+\,\,\dfrac{x-2021+2019}{2019}\,\,-\,\,\dfrac{x-2021+2018}{2018}\,\,-\,\,\dfrac{x-2021+2017}{2017}=0$
$\Leftrightarrow \dfrac{x-2021}{2020}\,\,+\,\,1\,\,+\,\,\dfrac{x-2021}{2019}\,\,+\,\,1\,\,-\,\,\dfrac{x-2021}{2018}\,\,-\,\,1\,\,-\,\,\dfrac{x-2021}{2017}\,\,-\,\,1=0$
$\Leftrightarrow \dfrac{x-2021}{2020}\,\,+\,\,\dfrac{x-2021}{2019}\,\,-\,\,\dfrac{x-2021}{2018}\,\,-\,\,\dfrac{x-2021}{2017}=0$
$\Leftrightarrow \left( x-2021 \right)\left( \dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017} \right)=0$
$\Leftrightarrow x-2021=0$ ( Vì $\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{2}{2017}\ne 0$ )
$\Leftrightarrow x=2021$
Bài 2:
a)$\dfrac{1}{1.3}\,+\,\dfrac{1}{3.5}\,+\,\dfrac{1}{5.7}\,+\,...+\dfrac{1}{\left( 2x-1 \right)\left( 2x+1 \right)}=\dfrac{49}{99}$
$\Leftrightarrow \dfrac{1}{2}\left( \dfrac{2}{1.3}\,+\,\dfrac{2}{3.5}\,+\,\dfrac{2}{5.7}\,+\,\dfrac{2}{\left( 2x-1 \right)\left( 2x+1 \right)} \right)=\dfrac{49}{99}$
$\Leftrightarrow \dfrac{1}{1}\,\,\,-\,\,\dfrac{1}{3}\,\,+\,\,\dfrac{1}{3}\,\,-\,\,\dfrac{1}{5}\,\,+\,\,\dfrac{1}{5}\,\,-\,\,\dfrac{1}{7}\,+...\,+\,\,\dfrac{1}{2x-1}\,\,\,\,-\dfrac{1}{2x+1}\,\,=\dfrac{98}{99}$
$\Leftrightarrow \dfrac{1}{1}-\dfrac{1}{2x+1}=\dfrac{98}{99}$
$\Leftrightarrow \dfrac{2x}{2x+1}=\dfrac{98}{99}$
$\Leftrightarrow 99\left( 2x \right)=98\left( 2x+1 \right)$
$\Leftrightarrow 2x=98$
$\Leftrightarrow x=49$
- b) $1-3+{{3}^{2}}-{{3}^{3}}+...-{{3}^{x}}=\dfrac{{{9}^{1000}}-1}{4}$
Đặt:
$\,\,\,S=1\,\,-\,\,3\,\,+\,\,{{3}^{2}}\,\,-\,\,{{3}^{3}}\,\,+...\,\,-\,\,{{3}^{x}}$
$3S=\,3\,\,-\,\,{{3}^{2}}\,\,+\,\,{{3}^{3}}\,\,-\,\,{{3}^{4}}\,\,+...\,\,-{{3}^{x+1}}$
$\to S+3S=\left( 1-3+{{3}^{2}}-{{3}^{3}}+...-{{3}^{x}} \right)+\left( 3-{{3}^{2}}+{{3}^{3}}-{{3}^{4}}+...-{{3}^{x+1}} \right)$
$\to 4S=1-{{3}^{x+1}}$
$\to S=\dfrac{1-{{3}^{x+1}}}{4}$
$\to \dfrac{{{9}^{1000}}-1}{4}=\dfrac{1-{{3}^{x+1}}}{4}$
$\to {{9}^{1000}}-1=1-{{3}^{x+1}}$
$\to {{3}^{x+1}}=2-{{9}^{1000}}$
${{3}^{x+1}}$ chia hết cho $3$
$2$ không chia hết cho $3$
${{9}^{1000}}$ chia hết cho $3$
Nên không có giá trị $x$
Đổi đề một chút:
$S=\dfrac{1-{{3}^{x+1}}}{4}=\dfrac{1-{{9}^{1000}}}{4}$
$\to 1-{{3}^{x+1}}=1-{{9}^{1000}}$
$\to {{3}^{x+1}}={{9}^{1000}}$
$\to {{3}^{x+1}}={{3}^{2000}}$
$\to x=1999$