Phương pháp giải: So sánh các số đã cho với một số trung gian khác. Từ đó so sánh được 2 số ban đầu với nhau. Sử dụng các công thức lũy thừa: \({\left( {{a^m}} \right)^n} = {a^{m.n}};\) \({a^m}.{a^n} = {a^{m + n}};\,\) \({\left( {ab} \right)^m} = {a^m}.{b^m}.\) Giải chi tiết:\({199^{20}}\) và \({2003^{15}}\) Ta có: \({199^{20}} < {200^{20}} = {\left( {8.25} \right)^{20}}\) \( = {\left( {{2^3}{{.5}^2}} \right)^{20}} = {2^{60}}{.5^{40}}\) \({2003^{15}} > {2000^{15}} = {\left( {16.125} \right)^{15}}\)\( = {\left( {{2^4}{{.5}^3}} \right)^{15}} = {2^{60}}{.5^{45}}\) Vì \({2^{60}}{.5^{45}} > {2^{60}}{.5^{40}}\)nên \({2003^{15}} > {199^{20}}\) Chọn B.