` (2x-1)/(x^2-4) + (x+3)/(2-x) +5 = 0` (ĐKXĐ : `x \ne ±2` )
`\to (2x-1)/(x^2-4) + ((x+3)(x+2))/(x^2-4) + (5(x^2-4))/(x^2-4)= 0`
`\to (2x-1)/(x^2-4) - ((x+3)(x+2))/(x^2-4) + (5(x^2-4))/(x^2-4)= 0`
`\to (2x-1 - (x+3)(x+2)+5(x^2-4))/(x^2-4) = 0`
`\to 2x -1 - (x^2 +5x +6) +5x^2-20= 0`
`\to 2x - 1 -x^2 -5x -6 + 5x^2 -20 = 0`
`\to 4x^2 - 3x - 27=0`
`\to (x-3)(4x+9) = 0`
`\to x = 3` hoặc ` 4x = -9`
`\to x = 3` ( thỏa mãn ) hoặc ` x = -9/4` ( thỏa mãn )
Vậy ` x \in { -9/4; 3 }`