`\text{~~Holi~~}`
`((x+2)/(x^2-x) + (x-2)/(x^2+x)):(x^2+2)/(x^2-1)`
`= [(x+2)/(x(x-1))+(x-2)/(x(x+1))].(x^2-1)/(x^2+2)`
`= ((x+1)(x+2)+(x+1)(x-2))/(x(x^2-1)) . (x^2-1)/(x^2+2)`
`= (x^2+2x+x+2+x^2-2x-x+2)/x . 1/(x^2+2)`
`= (2x^2+4)/x . 1/(x^2+2)`
`= (2(x^2+2))/x . 1/(x^2+2)`
`= 2/x \text{(*)}`
`\text{Thay x=2020 vào (*), ta được:}`
`2/x = 2/(2020) = 1/(1010)`