Đáp án:
a)ĐKXĐ:\(\begin{cases}x^2-2x \ge 0\\x+\sqrt{x^2-2x} \ne 0\\x-\sqrt{x^2-2x} \ne 0\\\end{cases}\)
`<=>` \(\begin{cases}x(x-2) \ge 0\\x \ne 0\\x \ne 0\\\end{cases}\)
`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge2\\x \le 0\end{array} \right.\\x \ne 0\\\end{cases}\)
`<=>` \(\left[ \begin{array}{l}x\ge 2\\x<0\end{array} \right.\)
`b)A=(x+\sqrt{x^2-2x})/(x-\sqrt{x^2-2x})-(x-\sqrt{x^2-2x})/(x+\sqrt{x^2-2x})`
`=(x+\sqrt{x^2-2x})^2/(x^2-(x^2-2x))-((x-\sqrt{x^2-2x})^2)/(x^2-(x^2-2x))`(Nhân liên hợp)
`=((x+\sqrt{x^2-2x})^2-(x-\sqrt{x^2-2x})^2)/(2x)`
`=(x^2+x^2-2x-x^2-x^2+2x+2x\sqrt{x^2-2x}+2x\sqrt{x^2-2x})/(2x)`
`=(4x\sqrt{x^2-2x})/(2x)`
`=2\sqrt{x^2-2x}`
`c)A<2`
`<=>\sqrt{x^2-2x}<1`
`<=>x^2-2x<1`
`<=>x^2-2x+1<2`
`<=>(x-1)^2<2`
`<=>-\sqrt2<x-1<\sqrt2`
`<=>1-sqrt2<x<1+sqrt2`
Kết hợp đkxđ ta có:\(\left[ \begin{array}{l}2 \le x<1+\sqrt2\\1-\sqrt2<x<0\end{array} \right.\)