Giải thích các bước giải:
6.6:
ĐKXĐ: $abc\ne 0$
Ta có:
$\dfrac{{{a^2}}}{{\left( {a - b} \right)\left( {a + b} \right) - {c^2}}} = \dfrac{{{a^2}}}{{{a^2} - {b^2} - {c^2}}} = \dfrac{{{a^2}}}{{{{\left( { - b - c} \right)}^2} - {b^2} - {c^2}}} = \dfrac{{{a^2}}}{{2bc}} = \dfrac{{{a^3}}}{{2abc}}$
Tương tự có:
$\dfrac{{{b^2}}}{{\left( {b - c} \right)\left( {b + c} \right) - {a^2}}} = \dfrac{{{b^3}}}{{2abc}};\dfrac{{{c^2}}}{{\left( {c - a} \right)\left( {c + a} \right) - {b^2}}} = \dfrac{{{c^3}}}{{2abc}}$
Khi đó:
$\begin{array}{l}
\Rightarrow T = \dfrac{{{a^2}}}{{\left( {a - b} \right)\left( {a + b} \right) - {c^2}}} + \dfrac{{{b^2}}}{{\left( {b - c} \right)\left( {b + c} \right) - {a^2}}} + \dfrac{{{c^2}}}{{\left( {c - a} \right)\left( {c + a} \right) - {b^2}}}\\
= \dfrac{{{a^3}}}{{2abc}} + \dfrac{{{b^3}}}{{2abc}} + \dfrac{{{c^3}}}{{2abc}}\\
= \dfrac{{{a^3} + {b^3} + {c^3}}}{{2abc}}\\
= \dfrac{{\left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ac} \right) + 3abc}}{{2abc}}\\
= \dfrac{{3abc}}{{2abc}}\left( {a + b + c = 0} \right)\\
= \dfrac{3}{2}
\end{array}$
Vậy $T= \dfrac{3}{2}$
6.7:
ĐKXĐ: $abc\ne 0; a+b+c\ne 0$
Ta có:
$\begin{array}{l}
P = \left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)\left( {\dfrac{1}{b} + \dfrac{1}{c}} \right)\left( {\dfrac{1}{c} + \dfrac{1}{a}} \right)\\
= \dfrac{{a + b}}{{ab}}.\dfrac{{b + c}}{{bc}}.\dfrac{{a + c}}{{ac}}\\
= \dfrac{{\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right)}}{{{{\left( {abc} \right)}^2}}}
\end{array}$
Lại có:
$\begin{array}{l}
{a^3} + {b^3} + {c^3} = 3abc\\
\Leftrightarrow \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ac} \right) + 3abc = 3abc\\
\Leftrightarrow \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ac} \right) = 0\\
\Leftrightarrow {a^2} + {b^2} + {c^2} - ab - bc - ac = 0\left( {a + b + c \ne 0} \right)\\
\Leftrightarrow 2\left( {{a^2} + {b^2} + {c^2} - ab - bc - ac} \right) = 0\\
\Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2} = 0\\
\Leftrightarrow a - b = b - c = c - a = 0\\
\Leftrightarrow a = b = c
\end{array}$
Như vậy:
$\begin{array}{l}
P = \dfrac{{\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right)}}{{{{\left( {abc} \right)}^2}}}\\
= \dfrac{{2a.2a.2a}}{{{{\left( {a.a.a} \right)}^2}}}\\
= \dfrac{8}{{{a^3}}}\\
= \dfrac{8}{{abc}}
\end{array}$
Ta có điều phải chứng minh.