a) \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{4}.(\dfrac{1}{n}-\dfrac{1}{n+4})\) b)Tính A=\(\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+...+\dfrac{4}{95}.\dfrac{4}{99}\)
a, Ta có: \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{n.\left(n+4\right)}=\dfrac{1}{4}.\dfrac{4}{n.\left(n+1\right)}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)