Đáp án+Giải thích các bước giải:
`3x^2-\sqrt{24}x=22`
`<=>3x^2-2x\sqrt{6}-22=0`
`<=>3(x^2-\frac{2x\sqrt{6}}{3}-22/3)=0`
`<=>x^2-2.x.\frac{\sqrt{6}}{3}+6/9-8=0`
`<=>(x-\frac{\sqrt{6}}{3})^2-8=0`
`<=>(x-\frac{\sqrt{2}}{\sqrt{3}}-2\sqrt{2})(x-\frac{\sqrt{2}}{\sqrt{3}}+2\sqrt{2})=0`
`<=>(x-\frac{\sqrt{2}+2\sqrt{6}}{\sqrt{3}})(x-\frac{\sqrt{2}-2\sqrt{6}}{\sqrt{3}})=0`
`<=>[(x=\frac{\sqrt{2}+2\sqrt{6}}{\sqrt{3}}),(x=\frac{\sqrt{2}-2\sqrt{6}}{\sqrt{3}}):}`
Vậy `S={\frac{\sqrt{2}+-2\sqrt{6}}{\sqrt{3}}}`