` (4x)/(x^2-5x+6) + (3x)/(x^2-7x+6) = 6`
`\to (4x(x^2-7x+6))/((x^2-5x+6)(x^2-7x+6)) + (3x(x^2-5x+6))/((x^2-5x+6)(x^2-7x+6))`
`\to 4x(x^2-7x+6) + 3x(x^2-5x+6) = 6(x^2-5x+6)(x^2-7x+6)`
`\to 4x^3 - 28x^2 + 24x + 3x^3 -15x^2 +18x = 6 ( x^4 - 12x^3+47x^2-72x +36)`
`\to 6x^4 - 72x^3 + 282x^2 - 432x +216= 4x^3 - 28x^2 + 24x + 3x^3 -15x^2 +18x`
`\to 6x^4 -79x^3+325x^2-474x+216 = 0`
`\to 6x^4 - 46x^3 + 36x^2 - 33x^3+253x^2 - 198x + 36x^2 -276x + 216=0`
`\to 2x^2(3x^2-23x+18) - 11x(3x^2-23x+18) + 12(3x^2-23x+18) = 0`
`\to (2x^2-11x+12)(3x^2-23x+18) = 0`
`to (x-4)(2x-3)(3x^2-23x+18) = 0`
`\to` \(\left[ \begin{array}{l}x-4=0\ \ (1)\\\\2x-3=0\ \ (2)\\\\3x^2-23x+18=0\ \ (3)\end{array} \right.\)
Xét ` (1) \leftrightarrow x - 4 = 0 \to x = 4`
Xét `(2) \leftrightarrow 2x- 3 = 0 \to 2x = 3 \to x = 3/2`
Xét ` (3) \leftrightarrow 3x^2-23x+18=0`
`\to 3(x^2 - 23/3x) + 18 = 0`
`\to 3(x^2 - 2. 23/6 . x + 526/36) - 313/12 = 0`
`\to 3( x - 23/6)^2 = 313/12`
`\to (x-23/6)^2 =313/36`
`\to \(\left[ \begin{array}{l}x-\dfrac{23}{6}=\dfrac{\sqrt{313}}{6}\\\\x-\dfrac{23}{6}=\dfrac{-\sqrt{313}}{6}\end{array} \right.\)
`\to` \(\left[ \begin{array}{l}x=\dfrac{23}{6}+\dfrac{\sqrt{313}}{6} =\dfrac{23+\sqrt{313}}{6}\\\\x=\dfrac{23}{6}-\dfrac{\sqrt{313}}{6}= \dfrac{23-\sqrt{313}}{6}\end{array} \right.\)
Vậy ` x \in { \dfrac{23+\sqrt{313}}{6};\ \dfrac{23-\sqrt{313}}{6};\ 4;\ 3/2 }`