`|4x - 3| - 2 = 5`
`=> |4x - 3| = 5 + 2`
`=> |4x - 3| = 7`
`=>` \(\left[ \begin{array}{l}4x - 3 = 7\\4x - 3 = -7\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=\dfrac{5}{2}\\x=-1\end{array} \right.\)
Vậy `x ∈ {5/2 ; -1}`
`|2x - 1| = 8`
`=>` \(\left[ \begin{array}{l}2x - 1 = 8\\2x - 1 = -8\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=\dfrac{9}{2}\\x=\dfrac{-7}{2}\end{array} \right.\)
Vậy `x ∈ {9/2 ; (-7)/2}`