`(-4x + 60) * (3 - x) = 0`
`<=>` \(\left[ \begin{array}{l}-4x + 60=0\\3-x=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}-4x=-60\\x=3\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=15\\x=3\end{array} \right.\)
Vậy \(\left[ \begin{array}{l}x=15\\x=3\end{array} \right.\)
;
;
`(x -1)*(x-2)*(x -3)=0`
`<=>` \(\left[ \begin{array}{l}x -1=0\\x-2=0\\x-3=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1\\x=2\\x=3\end{array} \right.\)
Vậy \(\left[ \begin{array}{l}x=1\\x=2\\x=3\end{array} \right.\)
;
;
`-28 - 7*|-3x+15|= -70`
`<=>-35*|-3x+15|= -70`
`<=>|-3x+15|=-70÷(-35)`
`<=>`\(\left[ \begin{array}{l}-3x+15=2\\-3x+15=-2\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}-3x=-13\\-3x=-17\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{13}{3}\\x=\dfrac{17}{3}\end{array} \right.\)
Vậy \(\left[ \begin{array}{l}x=\dfrac{13}{3}\\x=\dfrac{17}{3}\end{array} \right.\)
;
;
`|2x-1|+4=11`
`<=>` \(\left[ \begin{array}{l}2x-1=7\\2x-1=-7\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}2x=8\\2x=-8\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\)
Vậy \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\)
;
;
`23-|x+5|=17`
`<=>`\(\left[ \begin{array}{l}x+5=40\\x+5=-40\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=35\\x=-45\end{array} \right.\)
Vậy \(\left[ \begin{array}{l}x=35\\x=-45\end{array} \right.\)
;
;
`|x-7|+13=25`
`<=>`\(\left[ \begin{array}{l}x-7=38\\x-7=-38\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=45\\x=-45\end{array} \right.\)
Vậy \(\left[ \begin{array}{l}x=45\\x=-45\end{array} \right.\)