Đáp án:
Giải thích các bước giải:
bài 48
gọi 1h tổ 1 làm được x phần công việc. (x>0)
1h tổ 2 làm được y phần công việc. (y>0)
vì sau 6h 2 tổ làm chung thì xong việc nên ta có PT:
$6.(x+y)=1⇔x+y=\dfrac{1}{6}$ (1)
vì sau 2 h làm chung thì tổ 2 làm việc khác, tổ 1 làm việc còn lại trong 10 h nên ta có PT:
$2.(x+y)+10x=1$ (2)
từ 1 ;2 ta có hệ PT:
$\begin{cases}x+y=\dfrac{1}{6}\\2.(x+y)+10x=1\end{cases}$
$⇔\begin{cases}x+y=\dfrac{1}{6}\\2.\dfrac{1}{6}+10x=1\end{cases}$
$⇔\begin{cases}\dfrac{1}{15}+y=\dfrac{1}{6}\\x=\dfrac{1}{15}\end{cases}$
$⇔\begin{cases}y=\dfrac{1}{10}(T/M)\\x=\dfrac{1}{15}(T/M)\end{cases}$
mỗi tổ làm riêng xong việc sau:
tổ 1: $1:\dfrac{1}{15}=15h$
tổ 2: $1:\dfrac{1}{10}=10h$
bài 51
gọi số công nhân ban đầu của đội là x người. $(x>0;x∈N)$
thời gian của làm của đội là y(ngày). $(y>0)$
vì đội làm 420 công thợ trong y ngày nên có PT:
$xy=420$ (1)
vì số công nhân đội tăng thêm 5 và thời gian làm giảm 7 ngày nên ta có PT:
$(x+5).(y-7)=420$
$⇔xy+5y-7x-35=420$ (2)
từ 1 ;2 ta có hệ PT:
$\begin{cases}xy=420\\xy+5y-7x-35=420\end{cases}$
$⇔\begin{cases}y=\dfrac{420}{x}\\420+5y-7x-35=420\end{cases}$
$⇔\begin{cases}xy=420\\5\dfrac{420}{x}-7x=35\end{cases}$
$⇔\begin{cases}xy=420\\5\dfrac{420}{x}-7x=35\end{cases}$
$⇔\begin{cases}xy=420\\2100-7x^2=35x\end{cases}$
$⇔\begin{cases}15y=420\\x=15\end{cases}$
$⇔\begin{cases}y=28(T/M)\\x=15(T/M)\end{cases}$
vậy số công nhân của đội là 15 người.
bài 52:
$1h20p=\dfrac{4}{3}h$
gọi 1h lớp 9A làm được x phần công việc.(x>0)
1h lớp 9B làm được y phần công việc. (y>0)
vì 2 đội cùng làm xong việc sau $\dfrac{4}{3}h$ nên có PT:
$\dfrac{4}{3}.(x+y)=1$
$⇔x+y =\dfrac{3}{4}$ (1)
vì mỗi lớp làm nửa việc hết 3 h nên ta có PT:
$\dfrac{1}{2}.(\dfrac{1}{x}+\dfrac{1}{3})=3$
$⇔\dfrac{1}{x}+\dfrac{1}{y}=6$
$⇔\dfrac{x+y}{xy}=6
$⇔x+y=6xy$ (2)
từ 1 ;2 ta có hệ PT:
$\begin{cases}x+y =\dfrac{3}{4}\\x+y=6xy\end{cases}$
$⇔\begin{cases}x+y =\dfrac{3}{4}\\\dfrac{3}{4}=6xy\end{cases}$
$⇔\begin{cases}x =\dfrac{3}{4}-y\\\dfrac{1}{8}=y.(\dfrac{3}{4}-y)\end{cases}$
$⇔\begin{cases}x =\dfrac{3}{4}-y\\\left[ \begin{array}{l}y=\dfrac{1}{2}\\y=\dfrac{1}{4}\end{array} \right.\end{cases}$
$⇔\begin{cases}\left[ \begin{array}{l}y=\dfrac{1}{2}(T/M)\\x=\dfrac{1}{4}(T/M)\end{array} \right.\\\left[ \begin{array}{l}x=\dfrac{1}{2}(T/M)\\y=\dfrac{1}{4}(T/M)\end{array} \right.\end{cases}$
vậy mỗi lớp làm 1 mình hết:
lớp 9A: $1:\dfrac{1}{2}=2(h)$
hoặc: $1:\dfrac{1}{4}=4h$
lớp 9B: $1:\dfrac{1}{2}=2(h)$
hoặc: $1:\dfrac{1}{4}=4h$
vậy lớp 9A và 9B làm 1 mình hết thời gian là $2h;4h$ hoặc $4h;2h$