6/
Gọi a (m) là chiều dài, b (m) là chiều rộng vườn (a>b>0)
=> Diện tích là ab= 600 $m^2$ (1)
Nếu giảm mỗi cạnh 4 (m), diện tích là 416 $m^2$
=> Diện tích mới là (a-4)(b-4)= 416
<=> ab -4a - 4b+ 16= 416 (2)
Từ (1)(2) giải hệ ta có a= 30, b= 20 (TM)
Vậy chiều dài vườn là 30m, chiều rộng là 20m.
7/
Gọi a (m) là chiều dài, b (m) là chiều rộng khu đất (a>b>0)
Chu vi khu đất là 280m => 2(a+b)= 280
<=> a+b= 140 (1)
Sau khi làm đường đi rộng 2m, 2 cạnh phần đất còn lại lần lượt là (a-4) và (b-4) m
Diện tích còn lại là 4256 $m^2$
=> (a-4)(b-4)= 4256
<=> ab -4a -4b+ 16= 4256 (2)
Từ (1)(2) giải hệ ta có a= 80, b= 60 (TM)
Vậy chiều dài ban đầu là 80m, chiều rộng là 60m.
( Về cách giải hệ 2 bài, bạn dựa vào 2 pt tìm tổng S, tích P của a và b sau đó dùng công thức $x^2 - Sx+ P= 0$ )