Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
*)\\
{3.5^{2x + 1}} - {3.25^x} = 300\\
\Leftrightarrow {3.5^{2x}}{.5^1} - {3.25^x} = 300\\
\Leftrightarrow 3.5.{\left( {{5^2}} \right)^x} - {3.25^x} = 300\\
\Leftrightarrow {15.25^x} - {3.25^x} = 300\\
\Leftrightarrow {25^x}.\left( {15 - 3} \right) = 300\\
\Leftrightarrow {25^x}.12 = 300\\
\Leftrightarrow {25^x} = 300:12\\
\Leftrightarrow {25^x} = 25\\
\Leftrightarrow x = 1\\
*)\\
{\left( {3x - 2} \right)^4} = 625\\
\Leftrightarrow {\left( {3x - 2} \right)^4} = {5^4}\\
\Leftrightarrow 3x - 2 = 5\\
\Leftrightarrow 3x = 5 + 2\\
\Leftrightarrow 3x = 7\\
\Leftrightarrow x = \frac{7}{3}\\
*)\\
{\left( {x - 8} \right)^6} = \left( {x - 8} \right)\\
\Leftrightarrow {\left( {x - 8} \right)^6} - \left( {x - 8} \right) = 0\\
\Leftrightarrow \left( {x - 8} \right).\left[ {{{\left( {x - 8} \right)}^5} - 1} \right] = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 8 = 0\\
{\left( {x - 8} \right)^5} - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 8\\
{\left( {x - 8} \right)^5} = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 8\\
x - 8 = 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 8\\
x = 9
\end{array} \right.\\
*)\\
{\left( {2x - 1} \right)^2} = {\left( {x - 4} \right)^2}\\
\Leftrightarrow 2x - 1 = x - 4\\
\Leftrightarrow 2x - x = - 4 + 1\\
\Leftrightarrow x = - 3\\
*)\\
{6^{x + 6}} = {36^{x + 2}}\\
\Leftrightarrow {6^{x + 6}} = {\left( {{6^2}} \right)^{x + 2}}\\
\Leftrightarrow {6^{x + 6}} = {6^{2.\left( {x + 2} \right)}}\\
\Leftrightarrow {6^{x + 6}} = {6^{2x + 4}}\\
\Leftrightarrow x + 6 = 2x + 4\\
\Leftrightarrow 6 - 4 = 2x - x\\
\Leftrightarrow 2 = x\\
\Rightarrow x = 2
\end{array}\)