Điều kiện: x,y ∈ N*; x > y > 7
Năm nay tuổi mẹ gấp ba lần tuổi con, ta có phương trình: x = 3y
Bảy năm trước tuổi mẹ gấp năm lần tuổi con cộng thêm 4, ta có phương trình:
x – 7 = 5(y – 7 ) + 4
Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{x = 3y} \cr
{x – 7 = 5\left( {y – 7} \right) + 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 3y} \cr
{x – 5y = – 24} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 3y} \cr
{3y – 5y = – 24} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 3y} \cr
{y = 12} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 36} \cr
{y = 12} \cr} } \right. \cr} \)
x = 36, y = 12 thỏa mãn điều kiện bài toán.
Vậy hiện nay mẹ 36 tuổi, con 12 tuổi.