`(x+1)/x-2=1/(x^2-4)`
`<=>(x+2)(x-2)-x(x+2)(x-2)=x`
`<=>x^2-4-x^3+3x=0`
`<=>x=-1,8`
`x+2/x-2-1/x=2/x(x-2)`
`<=>x^2+1-2x=2(x-2)`
`<=>x^2+5-4x=0`
`<=>x=2`
`(x+2)/(x-x^2)+(5x+4)/(x(x+2))=x/(x+2)`
`<=>-4x^2+5x+8=x^2-x^3`
`<=>4x^2-5x-8+x^2-x^3=0`
`<=>5x^2-5x-8-x^3=0`
`<=>x≈-0,8`
`2/(x+1)-(3x+1)/(x+1)=1/((x+1)(x-2))`
`<=>(-3x+1)(x-2)=1`
`<=>-3x^2+7x-2=1`
`<=>3x^2-7x+3=0`
`<=>x=(7+√13)/6` hoặc `(7-√13)/6`