Đáp án + Giải thích các bước giải:
Bổ sung đề : `x∈Z`
Ta có :
`a)1<|x|<5`
Mà `x∈Z`
`→|x|=2;3;4`
`→x=±2;±3;±4`
Vậy `x∈{±2;±3;±4}`
`----------`
`b)|x|≤2`
Mà `x∈Z` và `|x|≥0`
`→|x|=2;1;0`
`→x=±2;±1;0`
Mà `x<0`
`→x=-1;-2`
Vậy `x∈{-1;-2}`
`----------`
`c)-3<x<4`
Mà `x∈Z`
`→x=-2;-1;0;1;2;3`
Vậy `x∈{-2;-1;0;1;2;3}`
`---------`
`d)-5≤x<4`
Mà `x∈Z`
`→x=-5;-4;-3;-2;-1;0;1;2;3`
Vậy `x∈{-5;-4;-3;-2;-1;0;1;2;3}`
`------------`
`e)|x|-x=0(ĐK:x∈Z)`
`→|x|=0+x`
`→|x|=x`
`→` \(\left[ \begin{array}{l}x=x\\x=-x(Vô Lí )\end{array} \right.\)
Vậy `x∈Z`
`------------`
`f)|x|+x=0`
`→|x|=0-x`
`→|x|=-x`
`+)` Nếu `x` dương
Ta có :
`|x|=-x`
Vì `|x|≥0`
Mà `-x` là số nguyên âm `→-x<0`
Lại có : `|x|=-x` `(Vô Lí )`
`+)` Nếu `x=0`
`|x|=-x`
`→|0|=-0`
`→0=0(Thỏa Mãn)`
`+)` Nếu `x` âm
`→-x` là số nguyên dương
Ta có :
`|x|=-x`
`→` \(\left[ \begin{array}{l}x=x\\x=-x(Vô Lí)\end{array} \right.\)
Vậy `x={0;-1;-2;-3;....}`