`A=(\frac{\sqrt{x}}{x-9}+\frac{2}{\sqrt{x}+3}+\frac{3}{3-\sqrt{x}}):(\sqrt{x}-3+\frac{12-x}{\sqrt{x}+3})(x\ne9,x>=0)`
`=(\frac{\sqrt{x}}{x-9}+\frac{2}{\sqrt{x}+3}-\frac{3}{\sqrt{x}-3}):(\frac{x-3+12-x}{\sqrt{x}+3})`
`=\frac{\sqrt{x}+2(\sqrt{x}-3)-3(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}+3}{9}`
`=\frac{\sqrt{x}+2\sqrt{x}-6-3\sqrt{x}-9}{(\sqrt{x}+3)(\sqrt{x}-3)}.\frac{\sqrt{x}+3}{9}`
`=\frac{-15(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3).9}`
`=\frac{-5}{3(\sqrt{x}-3)}`