Đáp án `+` Giải thích các bước giải `!`
`to` Tìm `x:`
`a)`
`(3x+4)^2-(3x-1)(3x+1) = 49`
`<=> 9x^2+24x+16-9x^2+1 = 49`
`<=> (9x^2-9x^2)+24x+(16+1) = 49`
`<=> 24x+17 = 49`
`<=> 24x = 32`
`<=> x = 4/3`
Vậy `S= {4/3}`
`b)`
`x^2-4x+4 = 9(x-2)`
`<=> (x^2-4x+4)-9(x-2) = 0`
`<=> (x-2)^2-9(x-2) = 0`
`<=> (x-2)(x-2-9) = 0`
`<=> (x-2)(x-11) = 0`
`<=>` \(\left[ \begin{array}{l}x-2=0\\x-11=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2\\x=11\end{array} \right.\)
Vậy `S= {2; 11}`
`c)`
`x^2-25 = 3x-15`
`<=> (x^2-25)-3x+15 = 0`
`<=> (x^2-25)-(3x-15) = 0`
`<=> (x-5)(x+5)-3(x-5) = 0`
`<=> (x-5)(x+5-3) = 0`
`<=> (x-5)(x+2) = 0`
`<=>` \(\left[ \begin{array}{l}x-5=0\\x+2=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=5\\x=-2\end{array} \right.\)
Vậy `S= {5; -2}`
`d)`
`(x-1)^3+3(x+1)^2 = (x^2-2x+4)(x+2)`
`<=> (x^3-3x^2+3x-1)+3(x^2+2x+1) = x^3+2^3`
`<=> x^3-3x^2+3x-1+3x^2+6x+3-x^3-8 = 0`
`<=> (x^3-x^3)+(-3x^2+3x^2)+(3x+6x)+(-1+3-8) = 0`
`<=> 9x-6 = 0`
`<=> 9x = 6`
`<=> x = 2/3`
Vậy `S= {2/3}`