Đáp án :
`a)x∈{-2/3; 4/3}`
`b)x∈{0;1;2}`
Giải thích các bước giải :
`a)-5+|3x-1|+6=|-4|`
`<=>|3x-1|+6-5=4`
`<=>|3x-1|=4-1`
`<=>|3x-1|=3`
`<=>`\(\left[ \begin{array}{l}3x-1=3\\3x-1=-3\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}3x=4\\3x=-2\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\frac{4}{3}\\3x=\frac{-2}{3}\end{array} \right.\)
Vậy `x∈{-2/3; 4/3}`
`b)(x-1)^2=(x-1)^4`
`<=>(x-1)^2-(x-1)^4=0`
`<=>(x-1)^2×[1-(x-1)^2]=0`
`<=>(x-1)^2(1-x+1)(1+x-1)=0`
`<=>x(2-x)(x-1)^2=0`
`<=>`\(\left[ \begin{array}{l}x=0\\2-x=0\\(x-1)^2=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x=2\\x-1=0\end{array} \right.\)
`<=>`(\left[ \begin{array}{l}x=0\\x=2\\x=1\end{array} \right.\)
Vậy `x∈{0;1;2}`