A = $\frac{9}{1.2}$ + $\frac{9}{2.3}$ + $\frac{9}{3.4}$ + ... + $\frac{9}{98.99}$ + $\frac{9}{99.100}$
A = 9 . ($\frac{1}{1.2}$ + $\frac{1}{2.3}$ + $\frac{1}{3.4}$ + ... + $\frac{1}{98.99}$ + $\frac{1}{99.100}$)
A = 9 . (1 - $\frac{1}{2}$ + $\frac{1}{2}$ - $\frac{1}{3}$ + $\frac{1}{3}$ - $\frac{1}{4}$ + ... + $\frac{1}{99}$ - $\frac{1}{100}$
A = 9 . (1 - $\frac{1}{100}$)
A = 9 . $\frac{99}{100}$
A = $\frac{891}{100}$