a) ta có : \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow\) \(A=2^{2018}-1\)
\(\Rightarrow2\left(A+1\right)=2\left(2^{2018}-1+1\right)=2\left(2^{2018}\right)=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
b) ta có : \(A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow\) \(A=2^{2018}-2\)
\(\Rightarrow2A+4=2\left(2^{2018}-2\right)+4=2^{2019}-4+4=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)