Đáp án:
Giải thích các bước giải:
a) `tan\ 9x=0`
ĐK: `cos\ 9x \ne 0`
`⇔ 9x \ne \frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \frac{\pi}{18}+k\frac{\pi}{9}\ (k \in \mathbb{Z})`
`⇒ 9x = k\pi\ (k \in \mathbb{Z})`
`⇔ x = k\frac{\pi}{9}\ (TM)\ (k \in \mathbb{Z})`
Vậy `S={k\frac{\pi}{9}\ (k \in \mathbb{Z})}`
b) `tan (3x+\frac{\pi}{6})=-\frac{1}{\sqrt{3}}`
ĐK: `cos (3x+\frac{\pi}{6}) \ne 0`
`⇔ 3x+\frac{\pi}{6} \ne \frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \frac{\pi}{9}+k\frac{\pi}{3}\ (k \in \mathbb{Z})`
`⇒ tan (3x+\frac{\pi}{6})=tan (-\frac{\pi}{6})`
`⇔ 3x+\frac{\pi}{6}=-\frac{\pi}{6}+k\pi\ (k \in \mathbb{Z})`
`⇔ x=-\frac{\pi}{9}+k\frac{\pi}{3}\ (TM)\ (k \in \mathbb{Z})`
Vậy `S={-\frac{\pi}{9}+k\frac{\pi}{3}\ (k \in \mathbb{Z})}`
c) `tan (2x+\frac{\pi}{5})=-\sqrt{3}`
ĐK: `cos (2x+\frac{\pi}{5}) \ne 0`
`⇔ 2x+\frac{\pi}{5} \ne \frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \frac{3\pi}{20}+k\frac{\pi}{2}\ (k \in \mathbb{Z})`
`⇒ tan (2x+\frac{\pi}{5})=tan (-\frac{\pi}{3})`
`⇔ 2x+\frac{\pi}{5}=-\frac{\pi}{3}+k\pi\ (k \in \mathbb{Z})`
`⇔ x=-\frac{4\pi}{15}+k\frac{\pi}{2}\ (TM)\ (k \in \mathbb{Z})`
Vậy `S={-\frac{4\pi}{15}+k\frac{\pi}{2}\ (k \in \mathbb{Z})}`
d) `cot\ 12x=1`
ĐK: `sin\ 12x \ne 0`
`⇔ 12x \ne k\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \k\frac{\pi}{12}\ (k \in \mathbb{Z})`
`⇒ cot\ 12x=cot (\frac{\pi}{4})`
`⇔ 12x=\frac{\pi}{4}+k\pi\ (k \in \mathbb{Z})`
`⇔ x=\frac{\pi}{48}+k\frac{\pi}{4}\ (TM)\ (k \in \mathbb{Z})`
Vậy `S={\frac{\pi}{48}+k\frac{\pi}{4}\ (TM)\ (k \in \mathbb{Z})}`
e) `cot\ 5x =-\frac{1}{\sqrt{3}`
ĐK: `sin\ 5x \ne 0`
`⇔ 5x \ne k\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \k\frac{\pi}{5}\ (k \in \mathbb{Z})`
`⇒ cot\ 5x=cot (\frac{2\pi}{3})`
`⇔ 5x=\frac{2\pi}{3}+k\pi\ (k \in \mathbb{Z})`
`⇔ x=\frac{2\pi}{15}+k\frac{\pi}{5}\ (TM)\ (k \in \mathbb{Z})`
Vậy `S={\frac{2\pi}{15}+k\frac{\pi}{5}\ (TM)\ (k \in \mathbb{Z})}`
f) `cot\ (3x+10^{0})=\frac{\sqrt{3}}{3}`
ĐK: `sin\ (3x+10^{0}) \ne 0`
`⇔ 3x+10^{0} \ne k180^{0}\ (k \in \mathbb{Z})`
`⇔ x \ne k\frac{170^{0}}{3}\ (k \in \mathbb{Z})`
`⇒ cot\ (3x+10^{0})=cot\ 60^{0}`
`⇔ 3x+10^{0}=60^{0}+k180^{0}\ (k \in \mathbb{Z})`
`⇔ x=\frac{50^{0}}{3}+k60^{0}\ (TM)\ (k \in \mathbb{Z})`
Vậy `S={\frac{50^{0}}{3}+k60^{0}\ (TM)\ (k \in \mathbb{Z})}`