Đáp án:
$\begin{array}{l}
a)\int {\left( {1 - 4x + {x^2}} \right)dx} \\
= x - 2{x^2} + \frac{{{x^3}}}{3} + C\\
b)\int {\frac{{3{x^2} - 4x + 2}}{{{x^2}}}} dx\\
= \int {2 - \frac{4}{x} + \frac{2}{{{x^2}}}dx} \\
= 2x - 4\ln x - \frac{2}{x} + C\\
c)\int {{e^{\sin \,x}}.\cos xdx} \\
= \int {{e^{\sin \,x}}.d\left( {\sin x} \right)} \\
= {e^{\sin \,x}} + C\\
d)\int {{x^2}\ln x} dx\\
= \ln x.\frac{{{x^3}}}{3} - \int {\frac{{{x^3}}}{3}.\frac{1}{x}dx} \\
= \ln x.\frac{{{x^3}}}{3} - \int {\frac{{{x^2}}}{3}} dx\\
= \ln x.\frac{{{x^3}}}{3} - \frac{{{x^3}}}{9} + C
\end{array}$