Đáp án:
\(\dfrac{{3\sqrt x }}{{\sqrt x + 2}}\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ge 0;x \ne 4\\
A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right) + 2\sqrt x \left( {\sqrt x - 2} \right) - 2 - 5\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{x + 3\sqrt x + 2 + 2x - 4\sqrt x - 2 - 5\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3x - 6\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3\sqrt x }}{{\sqrt x + 2}}
\end{array}\)