a) Đặt \(f_{\left(x\right)}=2x^2+x+a\)
Để \(f_{\left(x\right)}⋮x+3\)
\(thì\Rightarrow f_{\left(x\right)}:x+3\text{ }dư\text{ }0\)
\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(-3\right)}=0\)
\(\Rightarrow2\cdot\left(-3\right)^2+\left(-3\right)+a=0\\ \Rightarrow15+a=0\\ \Rightarrow a=-15\)
Vậy để \(2x^2+x+a⋮x+3\)
\(thì\text{ }a=-15\)
b) Đặt \(f_{\left(x\right)}=4x^2-6x+a\)
Để \(f_{\left(x\right)}⋮x-3\)
\(thì\text{ }f_{\left(x\right)}:x-3\text{ }dư\text{ }0\)
\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(3\right)}=0\)
\(\Rightarrow4\cdot3^2-6\cdot3+a=0\\ \Rightarrow18+a=0\\ \Rightarrow a=-18\)
Vậy để \(4x^2-6x+a⋮x-3\)
thì \(a=-18\)
c) Đặt \(f_{\left(x\right)}=x^3+ax^2-4\)
Để \(f_{\left(x\right)}⋮x^2+4x+4\)
\(thì\text{ }f_{\left(x\right)}⋮\left(x+2\right)^2\\ \Rightarrow f_{\left(x\right)}:\left(x+2\right)^2\text{ }dư\text{ }0\)
\(\Rightarrow Theo\text{ }định\text{ }lí\text{ }Bê-du:\text{ }f_{\left(-2\right)}=0\\ \Rightarrow\left(-2\right)^3+a\cdot\left(-2\right)^2-4=0\\ \Rightarrow-12+4a=0\\ \Rightarrow4a=12\\ \Rightarrow a=3\)
Vậy để \(x^3+ax^2-4⋮x^2+4x+4\)
\(thì\text{ }a=3\)