Đáp án:
Giải thích các bước giải:
Sử dụng phương pháp biện luận bất phương trình bậc nhất một ẩn:
- Nếu a>0a>0 thì ax+b>0ax+b>0⇔x>−ba⇔x>−ba nên S=(−ba;+∞)≠∅S=(−ba;+∞)≠∅ .
- Nếu a<0a<0 thì ax+b>0ax+b>0⇔x<−ba⇔x<−ba nên S=(−∞;−ba)≠∅S=(−∞;−ba)≠∅ .
- Nếu a=0a=0 thì ax+b>0ax+b>0 có dạng 0x+b>00x+b>0
+ Với b>0b>0 thì S=R.S=R.
+ Với b≤0b≤0 thì S=∅.