Đáp án: $C.\,\,5cm$
Giải thích các bước giải:
$T=\dfrac{t}{n}=\dfrac{30}{150}=0,2\,\,\left( s \right)$
$\omega =\dfrac{2\pi }{T}=\dfrac{2\pi }{0,2}=10\pi \,\,\left( rad \right)$
Như vậy, ta có: $\begin{cases}x=4\,\,\,\left(cm\right)\\v=30\pi\,\,\,\left(cm/s\right)\\\omega=10\pi\,\,\,\left(rad\right)\end{cases}$
Áp dụng hệ thức độc lập với thời gian:
$\,\,\,\,\,\,\,{{A}^{2}}={{x}^{2}}+\dfrac{{{v}^{2}}}{{{\omega }^{2}}}$
$\Rightarrow A=\sqrt{{{x}^{2}}+\dfrac{{{v}^{2}}}{{{\omega }^{2}}}}=\sqrt{{{4}^{2}}+\dfrac{{{\left( 30\pi \right)}^{2}}}{{{\left( 10\pi \right)}^{2}}}}=5\,\,\left( cm \right)$
Chọn câu $C$