$e)\,{{x}^{2}}-14x+48=0$
$\Delta ={{\left( -14 \right)}^{2}}\,-\,4.1.48=4\to \sqrt{\Delta }=2$
$\to\left[\begin{array}{1}{{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a}=\dfrac{-\left( -14 \right)+2}{2.1}=8\\\\{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}=\dfrac{-\left( -14 \right)-2}{2.1}=6\end{array}\right.$
$f)\,5{{x}^{2}}-29x+20=0$
$\Delta ={{\left( -29 \right)}^{2}}-4.5.20=441\to \sqrt{\Delta }=21$
$\to\left[\begin{array}{1}{{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a}=\dfrac{-\left( -29 \right)+21}{2.5}=5\\\\{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}=\dfrac{-\left( -29 \right)-21}{2.5}=\dfrac{4}{5}\end{array}\right.$
$g)\,{{x}^{2}}-7x-5=0$
$\Delta ={{\left( -7 \right)}^{2}}-4.1.\left( -5 \right)=69\to \sqrt{\Delta }=\sqrt{69}$
$\to\left[\begin{array}{1}{{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a}=\dfrac{-\left( -7 \right)+\sqrt{69}}{2.1}=\dfrac{7+\sqrt{69}}{2}\\\\{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}=\dfrac{-\left( -7 \right)-\sqrt{69}}{2.1}=\dfrac{7-\sqrt{69}}{2}\end{array}\right.$
$h)\,3{{x}^{2}}+7x+2=0$
$\Delta ={{7}^{2}}-4.3.2=25\to \sqrt{\Delta }=5$
$\to\left[\begin{array}{1}{{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a}=\dfrac{-7+5}{2.3}=-\dfrac{1}{3}\\\\{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}=\dfrac{-7-5}{2.3}=-2\end{array}\right.$
$i)\,{{x}^{2}}+6x+39=0$
$\Delta ={{6}^{2}}-4.39=-120<0$
$\to $ phương trình vô nghiệm
$j)\,3{{x}^{2}}+8x+4=0$
$\Delta ={{8}^{2}}-4.3.4=16\to \sqrt{\Delta }=4$
$\to\left[\begin{array}{1}{{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a}=\dfrac{-8+4}{2.3}=-\dfrac{2}{3}\\\\{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}=\dfrac{-8-4}{2.3}=-2\end{array}\right.$
$k)\,-3{{x}^{2}}+2x+1=0$
$\Delta ={{2}^{2}}-4.\left( -3 \right).1=16\to \sqrt{\Delta }=4$
$\to\left[\begin{array}{1}{{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a}=\dfrac{-2+4}{2.\left( -3 \right)}=-\dfrac{1}{3}\\\\{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}=\dfrac{-2-4}{2.\left( -3 \right)}=1\end{array}\right.$
$l)\,2{{x}^{2}}-11x+15=0$
$\Delta ={{\left( -11 \right)}^{2}}-4.2.15=1\to \sqrt{\Delta }=1$
$\left[\begin{array}{1}{{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a}=\dfrac{-\left( -11 \right)+1}{2.2}=3\\\\{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}=\dfrac{-\left( -11 \right)-1}{2.2}=\dfrac{5}{2}\end{array}\right.$