Đáp án:
\(\begin{array}{l}
4,\\
x \in \left\{ {0;\dfrac{1}{4};4} \right\}\\
5,\\
{P_{\min }} = 10 \Leftrightarrow x = 25
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
4,\\
P = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 1}}\,\,\,\,\,\,\left( {x \ge 0} \right)\\
P + 2 = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 1}} + 2 = \dfrac{{\left( {2\sqrt x - 1} \right) + 2\left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}}\\
= \dfrac{{2\sqrt x - 1 + 2\sqrt x + 2}}{{\sqrt x + 1}} = \dfrac{{4\sqrt x + 1}}{{\sqrt x + 1}}\\
x \ge 0 \Rightarrow \left\{ \begin{array}{l}
4\sqrt x + 1 \ge 1 > 0\\
\sqrt x + 1 \ge 1 > 0
\end{array} \right. \Rightarrow \dfrac{{4\sqrt x + 1}}{{\sqrt x + 1}} > 0\\
\Rightarrow P + 2 > 0,\,\,\,\forall x \ge 0\\
\Rightarrow P > - 2,\,\,\,\forall x \ge 0\\
P - 2 = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 1}} - 2 = \dfrac{{\left( {2\sqrt x - 1} \right) - 2.\left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}}\\
= \dfrac{{2\sqrt x - 1 - 2\sqrt x - 2}}{{\sqrt x + 1}} = \dfrac{{ - 3}}{{\sqrt x + 1}}\\
x \ge 0 \Rightarrow \sqrt x + 1 \ge 1 > 0 \Rightarrow \dfrac{{ - 3}}{{\sqrt x + 1}} < 0\\
\Rightarrow P - 2 < 0,\,\,\,\forall x \ge 0\\
\Leftrightarrow P < 2,\,\,\,\forall x \ge 0\\
\Rightarrow - 2 < P < 2,\,\,\,\forall x \ge 0\\
P \in Z \Rightarrow P \in \left\{ { - 1;0;1} \right\}\\
*)\\
P = - 1 \Rightarrow \dfrac{{2\sqrt x - 1}}{{\sqrt x + 1}} = - 1\\
\Leftrightarrow 2\sqrt x - 1 = - \sqrt x - 1\\
\Leftrightarrow 2\sqrt x + \sqrt x = 0\\
\Leftrightarrow 3\sqrt x = 0\\
\Leftrightarrow \sqrt x = 0\\
\Leftrightarrow x = 0\\
*)\\
P = 0 \Leftrightarrow \dfrac{{2\sqrt x - 1}}{{\sqrt x + 1}} = 0\\
\Leftrightarrow 2\sqrt x - 1 = 0\\
\Leftrightarrow \sqrt x = \dfrac{1}{2}\\
\Leftrightarrow x = \dfrac{1}{4}\\
*)\\
P = 1 \Leftrightarrow \dfrac{{2\sqrt x - 1}}{{\sqrt x + 1}} = 1\\
\Leftrightarrow 2\sqrt x - 1 = \sqrt x + 1\\
\Leftrightarrow \sqrt x - 1 = 1\\
\Leftrightarrow \sqrt x = 2\\
\Leftrightarrow x = 4\\
Vậy\,\,\,x \in \left\{ {0;\dfrac{1}{4};4} \right\}\\
5,\\
Q = \dfrac{{x + 15}}{{\sqrt x - 1}}\\
Q - 10 = \dfrac{{x + 15}}{{\sqrt x - 1}} - 10\\
= \dfrac{{x + 15 - 10\left( {\sqrt x - 1} \right)}}{{\sqrt x - 1}}\\
= \dfrac{{x + 15 - 10\sqrt x + 10}}{{\sqrt x - 1}}\\
= \dfrac{{x - 10\sqrt x + 25}}{{\sqrt x - 1}}\\
= \dfrac{{x - 2.\sqrt x .5 + {5^2}}}{{\sqrt x - 1}}\\
= \dfrac{{{{\left( {\sqrt x - 5} \right)}^2}}}{{\sqrt x - 1}}\\
{\left( {\sqrt x - 5} \right)^2} \ge 0,\,\,\,\forall x > 1\\
\sqrt x - 1 > 0,\,\,\,\forall x > 1\\
\Rightarrow \dfrac{{{{\left( {\sqrt x - 5} \right)}^2}}}{{\sqrt x - 1}} \ge 0,\,\,\,\forall x > 1\\
\Rightarrow P - 10 \ge 0,\,\,\,\forall x > 1\\
\Leftrightarrow P \ge 10,\,\,\,\forall x > 1\\
\Rightarrow {P_{\min }} = 10 \Leftrightarrow {\left( {\sqrt x - 5} \right)^2} = 0 \Leftrightarrow \sqrt x = 5 \Leftrightarrow x = 25\\
Vậy \,\,\,{P_{\min }} = 10 \Leftrightarrow x = 25
\end{array}\)