Đáp án:
\(\begin{array}{l}
a)\,\,\overrightarrow {AI} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} .\\
b)\,\,\overrightarrow {JK} = - \frac{2}{3}\overrightarrow {AC} + \frac{1}{4}\overrightarrow {AB} .\\
c)\,\,\overrightarrow {BC} = - 10\overrightarrow {AI} - 24\overrightarrow {JK} .
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\,\,IB = 3IC \Rightarrow \overrightarrow {BI} = \frac{3}{2}\overrightarrow {BC} \\
\Rightarrow \overrightarrow {AI} = \overrightarrow {AB} + \overrightarrow {BI} = \overrightarrow {AB} + \frac{3}{2}\overrightarrow {BC} \\
= \overrightarrow {AB} + \frac{3}{2}\left( {\overrightarrow {BA} + \overrightarrow {AC} } \right) = \overrightarrow {AB} - \frac{3}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \\
= - \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} .\\
b)\,\,\,JA = 2JC \Rightarrow \overrightarrow {AJ} = \frac{2}{3}\overrightarrow {AC} \\
KB = 3KA \Rightarrow \overrightarrow {AK} = \frac{1}{4}\overrightarrow {AB} \\
\Rightarrow \overrightarrow {JK} = \overrightarrow {JA} + \overrightarrow {AK} = - \frac{2}{3}\overrightarrow {AC} + \frac{1}{4}\overrightarrow {AB} .\\
c)\,\,Ta\,\,\,\,co:\left\{ \begin{array}{l}
\,\overrightarrow {AI} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \\
\overrightarrow {JK} = - \frac{2}{3}\overrightarrow {AC} + \frac{1}{4}\overrightarrow {AB}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2\overrightarrow {AI} = - \overrightarrow {AB} + 3\overrightarrow {AC} \\
12\overrightarrow {JK} = - 8\overrightarrow {AC} + 3\overrightarrow {AB}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2\overrightarrow {AI} = - \overrightarrow {AB} + 3\overrightarrow {AC} \\
12\overrightarrow {JK} = 3\overrightarrow {AB} - 8\overrightarrow {AC}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
6\overrightarrow {AI} = - 3\overrightarrow {AB} + 9\overrightarrow {AC} \\
12\overrightarrow {JK} = 3\overrightarrow {AB} - 8\overrightarrow {AC}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AC} = 6\overrightarrow {AI} + 12\overrightarrow {JK} \\
\overrightarrow {AB} = 3\overrightarrow {AC} - 2\overrightarrow {AI}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AB} = 3\left( {6\overrightarrow {AI} + 12\overrightarrow {JK} } \right) - 2\overrightarrow {AI} \\
\overrightarrow {AC} = 6\overrightarrow {AI} + 12\overrightarrow {JK}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AB} = 16\overrightarrow {AI} + 36\overrightarrow {JK} \\
\overrightarrow {AC} = 6\overrightarrow {AI} + 12\overrightarrow {JK}
\end{array} \right.\\
\Rightarrow \overrightarrow {BC} = \overrightarrow {BA} + \overrightarrow {AC} = - \overrightarrow {AB} + \overrightarrow {AC} \\
= - 16\overrightarrow {AI} - 36\overrightarrow {JK} + 6\overrightarrow {AI} + 12\overrightarrow {JK} \\
= - 10\overrightarrow {AI} - 24\overrightarrow {JK} .
\end{array}\)