Đáp án:
\(\begin{array}{l}
1,\\
\left[ \begin{array}{l}
x = \dfrac{\pi }{{24}} + k\pi \\
x = \dfrac{{5\pi }}{{24}} + k\pi
\end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
2,\\
\left[ \begin{array}{l}
x = - \dfrac{\pi }{{12}} + k\pi \\
x = - \dfrac{\pi }{{48}} + \dfrac{{k\pi }}{4}
\end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
2\cos \left( {\dfrac{\pi }{4} - 2x} \right) - \sqrt 3 = 0\\
\Leftrightarrow \cos \left( {\dfrac{\pi }{4} - 2x} \right) = \dfrac{{\sqrt 3 }}{2}\\
\Leftrightarrow \cos \left( {\dfrac{\pi }{4} - 2x} \right) = \cos \dfrac{\pi }{6}\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{\pi }{4} - 2x = \dfrac{\pi }{6} + k2\pi \\
\dfrac{\pi }{4} - 2x = - \dfrac{\pi }{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{\pi }{4} - \dfrac{\pi }{6} + k2\pi \\
2x = \dfrac{\pi }{4} - \left( { - \dfrac{\pi }{6}} \right) + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{\pi }{{12}} + k2\pi \\
2x = \dfrac{{5\pi }}{{12}} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{{24}} + k\pi \\
x = \dfrac{{5\pi }}{{24}} + k\pi
\end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
2,\\
\sqrt 3 \cos 5x - \sin 5x = 2\cos 3x\\
\Leftrightarrow \dfrac{{\sqrt 3 }}{2}\cos 5x - \dfrac{1}{2}\sin 5x = \cos 3x\\
\Leftrightarrow \cos 5x.\cos \dfrac{\pi }{6} - \sin 5x.\sin \dfrac{\pi }{6} = \cos 3x\\
\Leftrightarrow \cos \left( {5x + \dfrac{\pi }{6}} \right) = \cos 3x\\
\Leftrightarrow \left[ \begin{array}{l}
5x + \dfrac{\pi }{6} = 3x + k2\pi \\
5x + \dfrac{\pi }{6} = - 3x + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = - \dfrac{\pi }{6} + k2\pi \\
8x = - \dfrac{\pi }{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \dfrac{\pi }{{12}} + k\pi \\
x = - \dfrac{\pi }{{48}} + \dfrac{{k\pi }}{4}
\end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)
\end{array}\)