Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\sqrt {\sqrt 5 - \sqrt {3 - \sqrt {29 - 12\sqrt 5 } } } \\
= \sqrt {\sqrt 5 - \sqrt {3 - \sqrt {20 - 2.2\sqrt 5 .3 + 9} } } \\
= \sqrt {\sqrt 5 - \sqrt {3 - \sqrt {{{\left( {2\sqrt 5 - 3} \right)}^2}} } } \\
= \sqrt {\sqrt 5 - \sqrt {3 - \left( {2\sqrt 5 - 3} \right)} } \\
= \sqrt {\sqrt 5 - \sqrt {6 - 2\sqrt 5 } } \\
= \sqrt {\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} } \\
= \sqrt {\sqrt 5 - \left( {\sqrt 5 - 1} \right)} \\
= \sqrt 1 = 1\\
b,\\
\sqrt {13 + 30\sqrt {2 + \sqrt {9 + 4\sqrt 2 } } } \\
= \sqrt {13 + 30\sqrt {2 + \sqrt {8 + 2.2\sqrt 2 + 1} } } \\
= \sqrt {13 + 30\sqrt {2 + \sqrt {{{\left( {2\sqrt 2 + 1} \right)}^2}} } } \\
= \sqrt {13 + 30\sqrt {2 + \left( {2\sqrt 2 + 1} \right)} } \\
= \sqrt {13 + 30\sqrt {3 + 2\sqrt 2 } } \\
= \sqrt {13 + 30\sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} } \\
= \sqrt {13 + 30\left( {\sqrt 2 + 1} \right)} \\
= \sqrt {43 + 30\sqrt 2 } \\
= \sqrt {25 + 2.5.3\sqrt 2 + 18} \\
= \sqrt {{{\left( {5 + 3\sqrt 2 } \right)}^2}} = 5 + 3\sqrt 2 \\
c,\\
\left( {\sqrt 3 - \sqrt 2 } \right).\sqrt {5 + 2\sqrt 6 } \\
= \left( {\sqrt 3 - \sqrt 2 } \right).\sqrt {3 + 2\sqrt 3 .\sqrt 2 + 2} \\
= \left( {\sqrt 3 - \sqrt 2 } \right).\sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} \\
= \left( {\sqrt 3 - \sqrt 2 } \right).\left( {\sqrt 3 + \sqrt 2 } \right)\\
= 3 - 2 = 1\\
d,\\
\sqrt {5 - \sqrt {13 + 4\sqrt 3 } } + \sqrt {3 + \sqrt {13 + 4\sqrt 3 } } \\
= \sqrt {5 - \sqrt {12 + 2.2\sqrt 3 .1 + 1} } + \sqrt {3 + \sqrt {12 + 2.2\sqrt 3 .1 + 1} } \\
= \sqrt {5 - \sqrt {{{\left( {2\sqrt 3 + 1} \right)}^2}} } + \sqrt {3 + \sqrt {{{\left( {2\sqrt 3 + 1} \right)}^2}} } \\
= \sqrt {5 - \left( {2\sqrt 3 + 1} \right)} + \sqrt {3 + \left( {2\sqrt 3 + 1} \right)} \\
= \sqrt {4 - 2\sqrt 3 } + \sqrt {4 + 2\sqrt 3 } \\
= \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} \\
= \sqrt 3 - 1 + \sqrt 3 + 1 = 2\sqrt 3 \\
e,\\
\sqrt {1 + \sqrt {3 + \sqrt {13 + 4\sqrt 3 } } } + \sqrt {1 - \sqrt {3 - \sqrt {13 - 4\sqrt 3 } } } \\
= \sqrt {1 + \sqrt {3 + \sqrt {12 + 2.2\sqrt 3 .1 + 1} } } + \sqrt {1 - \sqrt {3 - \sqrt {12 - 2.2\sqrt 3 .1 + 1} } } \\
= \sqrt {1 + \sqrt {3 + \sqrt {{{\left( {2\sqrt 3 + 1} \right)}^2}} } } + \sqrt {1 - \sqrt {3 - \sqrt {{{\left( {2\sqrt 3 - 1} \right)}^2}} } } \\
= \sqrt {1 + \sqrt {3 + \left( {2\sqrt 3 + 1} \right)} } + \sqrt {1 - \sqrt {3 - \left( {2\sqrt 3 - 1} \right)} } \\
= \sqrt {1 + \sqrt {4 + 2\sqrt 3 } } + \sqrt {1 - \sqrt {4 - 2\sqrt 3 } } \\
= \sqrt {1 + \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} } + \sqrt {1 - \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} } \\
= \sqrt {1 + \left( {\sqrt 3 + 1} \right)} + \sqrt {1 - \left( {\sqrt 3 - 1} \right)} \\
= \sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } \\
= \sqrt {\dfrac{1}{2}.\left( {4 + 2\sqrt 3 } \right)} + \sqrt {\dfrac{1}{2}\left( {4 - 2\sqrt 3 } \right)} \\
= \sqrt {\dfrac{1}{2}.{{\left( {\sqrt 3 + 1} \right)}^2}} + \sqrt {\dfrac{1}{2}.{{\left( {\sqrt 3 - 1} \right)}^2}} \\
= \dfrac{1}{{\sqrt 2 }}\left( {\sqrt 3 + 1} \right) + \dfrac{1}{{\sqrt 2 }}\left( {\sqrt 3 - 1} \right) = \sqrt 6
\end{array}\)